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Abstract—A spectral analysis of the acceleration wave problem in general elasto-plastic materials
is carried out. whereby explicit expressions for the eigenvalues and eigenvectors are obtained. In
case of nonassociated plasticity, all eigenvectors become nonorthogonal and one eigenvalue always
remains unchanged and equal to the shear modulus. For a very broad class of nonassociated
plasticity models, it is shown that the eigenvalues are always real, implying that so-called “diver-
gence™ instability can occur, while “flutter” instability can never occur. It is found that a certain
value of the hardening modulus exists for which specific propagation directions will always imply
that all wave speeds are identical and equal to the elastic distortion wave speed. Moreover, in this
situation the eigenvectors are arbitrary, corresponding to a state of diffuse wave modces. The criteria
of von Mises and Rankine are used to illustrate some of the tindings.

INTRODUCTION

Propagation of acceleration waves in solid bodics is a phenomenon which has long been
subject to intensive investigation. It turns out that the fundamental nature of acceleration
waves relates direetly to the important issues of stability, static bifurcations and plane wave
propagation. Morcover, recent finite clement developments to capture the localization of
strains in thin zones within a body have intensified the interest in acceleration waves
considerably. i

The pioncering work by Hadamard (1903), where elastic bodies were studied, estab-
lished the basis for the analysis. Hill (1961, 1962) and Mandel (1962, 1964) extended this
work to elasto-plasticity and further progress was obtiained by Rice (1976). The work of
Truesdell (1965) provides a comprehensive treatment of many of the aspects related to
acceleration waves. Hill (1962) determined analytical expressions by which the cigenvalues
and eigenvectors for associated plasticity can be determined. However, except for the
advances made by Mandel (1964), the issue of how to determine the eigenvalues and
eigenvectors for general nonassociated plasticity has been left open, which means that it
has been difficult to gain insight into the fundamental mechanisms of different types of
material models. The cigenvalues and eigenvectors can always be determined numerically
for different wave propagation directions, ¢f. Sobh (1987), but apart from being time-
consuming, such an approach does not facilitate a concise and general evaluation. Here,
we shall present explicit analytical expressions for the eigenvalues and eigenvectors for
general nonassociated plasticity. We shall thereby employ the spectral results obtained for
the static bifurcation problem dealt with by Ottosen and Runesson (1991). It is also shown
that for a broad class of nonassociated plasticity, “flutter™ instability cannot occur and we
identify the interesting phenomenon of diffuse wave modes.

PLASTICITY FORMULATION

For the sake of simplicity. we shall assume that displacements and strains are small.
With g, and ¢, being the stress and strain tensor, respectively, and a dot denoting the time
derivative, the constitutive relations appropriate for a nonassociated flow rule are
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dl, = DI,A/éu (1)

where the bilinear tangent stiffness tensor D, ,, is given by

D'l:/ll'l (E)

L. .
7/H_ X D:/\-I!/\:/;nr:D«'y:vk/ (P)
for elastic (E) and plastic (P) loading, respectively. Here D;;, denotes the isotropic elastic
stiffness tensor. which is assumed to be positive definite, constant and symmetric, i.c.
D}, = Di,,. Moreover,

g )

where fand ¢ are the yield function and plastic potential. respectively, which depend on
the stress state and a set of hardening variables. The positive quantity A is defined by

A=H+/,0,u9,>0 (4

where H is the gencralized plastic modulus. £ is positive, zero or negative for hardening,
perfect or softening plasticity, respectively. [t appears that D, is symmetric (D, = Dy,,,)
for associated plasticity, ic. f, = g¢,. whereas D, is nonsymmetric for nonassociated
plasticity.

Plastic loading (P) will tuke place whenever the stress state is on the yield surface and

/,/ I)Ic[/\/‘;/\/ = 0. (5)

Otherwise, elastic behaviour (E) occurs. Here, we shall only consider the case of plastic
loading.

The motion of a so-called singular surface, across which variables may be discon-
tinuous, is the main subject of this study. The jump conditions associated with such
discontinuities were already established in the pioncering work of Hadamard (1903). How-
ever, it seems appropriate to present a short derivation of the most important jump
conditions while only assumptions that are relevant to the present analysis are made.

PRELIMINARIES

Considering the vector f, = f,(x.). where x, is the position vector, we have

.,
U d, (6)

X

d/,

k

The length of dx, is denoted by [dx ] = ds, i.c. the unit vector s, in the direction of dx; is
given by s, = dx,/ds. From eqn (6) we then obtain

df, _of,

= Sk'
ds ¢x;

(7

If the vector f, is constant on a surface S, eqn (7) yields:
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S/ (8)
ds Cx,

where 1, denotes a unit vector tangential to the surface S. According to eqn (8) the vector
¢ f1:¢x, 1s normal to the arbitrary tangential vector ¢, 1.e. we have ¢f,/¢x, = ¢ n,. where
n, is the unit vector normal to the surface S and ¢, is a scalar. The same arguments hold
for the vectors &f~/¢x, and ¢ f7/Cx.. i.e. eqn (8) has the solution

~

-
cl
=

= (N, (9)

¢y

If. in eqn (7). we let 5, be n,. then we use the notation ds = dn and find with eqn (9) that

df,
. 10
dn ¢ (o
iL.e. eqn (9) can be written as
of,  dy,
Ay, T dn ™ (th

If. instead of a vector function f,. we study a scalar function f(x,) that is constant on the
surtuce S, then egn (1) reduces to the familiar expression for the gradient

af  df
= n

v, dn

k- (12)
Similarly, considering a tensor function f,,(x) that ts constant on the surface S, we obtain

. (13)

JUMP CONDITIONS

We shall study the motion of a surface S through the body. This surfuace divides the
body so that a quantity—say f,—has one value /7, on one side of S and another value f7,
on the other side of S. The difference of f,, across S will, as usual, be denoted by [ £ ]. i.c.

(S =10=10

We here consider a state where the displacement w,, the velocity 4,, the displacement gradient
u,, = cujix, the strain £, and the stress g, are continuous across S, i.c.

(] =[] = [w,)) =[] = [0,) =0 (14)

and we shall investigate the possibility that a surface S can exist, across which the velocity
gradient g, . the stress rate 4, and the acceleration 4, become discontinuous. If such a
surface exists then, since [i,] = [s,] = 0 holds on the surface, then we can use eqns (10),
(11) and (13) to obtain

4Q

] 00
Xy

=G 6= ie [§,] = Yenm, +c,n) (15)

and
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(le,]  ds,
*E—']v = - ! '] n. (16)
cx; dn
Now let x,(¢.t) be an arbitrary curve on S, where ¢ is a curve parameter and r is time. The
velocity of a point on this curve 1s given by x,. The component of ¥ in the direction of the
normal n, to the surface is by definition the so-called wave speed (. 1.e.

U=xn,. (17)

In other words the wave speed is the speed with which S travels in the direction of n,.
Assume that the vector function f, = f(x,. 1) is always zero on the surface S. Differ-
entiation with respect to time yields

s O
S+ 2% =0
Xy

where f, = ¢ f,/¢1. Use of eqns (11) and (17) gives

df

ﬁ+cd” 0. (18)

Likewise, for the tensor function £ (x,, £) = 0 on the surface S, we obtain

A
L+ =0
cx,
and use of cgns (13) and (17) results in
. df
_h+b’h=0. (19)
dn

As (i) = [o,] = 0on S, setung £, =[] ineqn (18) and /,, = [a,] in eyn (19) provides

dli
[“+meJ=0 (20a)
dn
d
1+ 0 2o (20b)
dn

Multiplying the fust equation by 2, and using egn (16) yields

-~

G, 0n,+0 % o, Q1)

ox

On cach side of the surface S, all variables are continuous and differentiable, i.e. the standard
equilibrium conditions hold and we can therefore write
(.‘(T" g 9 et (.'6, ’ 2y
; ..’1 +h! = p"ii’; B \"' +b = pi.

('\/ 7

We shall also assume that the body force A, and mass density p are continuous across the
surfuce S, i.e. b’ = b, = b, and p” = p’ = p. Subtraction of the two cquilibrium conditions
thus gives
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lo.]

= = plid]. (22
cx,

GENERAL ACCELERATION WAVE ANALYSIS—PLANE WAVES—STABILITY

We are now in a position to formulate the acceleration wave equations. Use of eqn
(22) in (21) results in

[, )n,+pUi] =0
and from eqns (15) and (20a) we have
(5] = ~Ue¢,
Combining these equations. we obtain
[d,]n, = pL7c,. (23)

The stress rates are assumed to correspond to plastic loading, and as the stresses and strains
are continuous, the elasto-plastic tangent stiftness tensor D, is also continuous across S,
i.e.

[O",,III, =N, [):/k/[‘fkll =N, [),,A/”/‘('/ (24)

where eqn (15) has been used. From eqns (23) and (24), we finally obtlain the equations
which control accecleration waves

Que = I’UIG (25)
where the so-called acoustic tensor @, is given by
Q:l = ”/ DI/LI”I«" (26)

In the analysis of static bifurcation Q, is often called the characteristic stiffness tensor. It
appears that Q, depends on the material parameters as well as on the direction n;. The
equation system (25) constitutes an eigenvalue problem with pU- being the eigenvalue and
¢, the eigenvector and we shall later present analytical solutions for this eigenvalue problem.
Since only certain ¢,-vectors are eigenvectors, these are said to be polarized and therefore
the Q,~tensor is occasionally termed the polarization tensor. If the wave speed U is zero,
egn (23) reduces to the static bifurcation condition considered by Ottosen and Runesson
(1991), i.c. the surface S, across which jumps may occur in the stress and strain rates, is
then fixed in the body.

Another important phenomenon controlled by eqn (25) is that of propagation of pliane
waves. Whercas eqn (25) was derived on the basis that a surface S —across which the stress
and strain rates as well as the acceleration are discontinuous —travels through the material,
we shall now show that the equations for the existence of plane waves are formally the
same, even though plane waves do not necessarily involve discontinuitics.

A planc wave in direction n, is defined by

u, = c f(x U0 27)

where ¢;, n, and U are constants and f denotes an arbitrary function. If [ is twice
differentiable, we have
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S o f ¢ f
i, =0, ——"—=. w, =cnn ————. 28
i I /l'(”kxkict)' (=3)

Assume that the matenial is stressed to a certain state and that this state is in static
equilibrium. i.e.

g,,+pb, =0. (29)

We now investigate the existence of small vibrations about this equilibrium state assuming
that the body forces are unchanged. The additional small stresses and displacements caused
by the vibrations are denoted by o and «,. respectively. It follows that

(0., +0%),+pbh, = pii,. (30)
Subtraction of eqn (29) from (30) gives

an, = pli,. (3H)
Assume now that the material is in an homogeneous state in its original equilibrium
configuration. Then the elastic —plastic constitutive tensor is constant throughout the body,
e, eqn (31) yiclds

Dy, = pii,.

By using cqn (28) in this expression, we recover the aceeleration wave eqn (25), which
demonstrates the fact that even though acceleration waves and plane waves in general are
physically distinet phenomena, they are controlled by the sume equations. As the inves-
tigation of plance waves was based on small vibrations about an already stressed state, this
is equivalent to the so-called acoustic approximation in fluid mechanics and for this reason,
Q. ineygn (25) s referred to as the acoustic tensor.

It the cigenvalues pU* of eyn (25) are real and positive, both acceleration waves and
plane waves exist. Since the amplitude of the function f in eqn (27) is small, u, will
always remain small. This signals a stable situation. If pU* is real but negative, then the
corresponding acceleration wave does not exist, but plane waves will still be possible. To see
this, we note that any linear combination of solutions of the form (27) is a valid plane wave
solution. Suppose that U* = —a?, i.e. U = +ia, where « is positive. Since pU? is real, the
corresponding eigenvector ¢, is also real and U = +ix corresponds to the sume eigenvector.
Choosing f as a sine function in eqn (27), the following plane wave is possible

u, = ¢[sin (nx, +ixg) +sin (nox —iw)] = 2¢, cos (ixr) sin (nx;).
Using Euler’s formula, we find that
e Y)sin (n,x). (32)

It appears that expression (32), which was derived on condition that pU * is real but negative,
provides a solution where the displacement u, increases with time. This indicates that an
arbitrary small disturbance can grow infinitely large with time and we clearly have an
unstable situation. As U is negative and as solution (32) for a fixed x,-vector increases
with time without any oscillations. it is common to term the behaviour given by eqn (32)
as “divergence” instability in accordance with the terminology in aerodynamics. cf. Rice
(1976) and Leipholz (1972).

For linear elasticity as well as associated plasticity, the acoustic tensor Q, in eqn (25)
is symmetric. i.c. the eigenvalues are always real. As the elastic constitutive tensor Dj;, is
assumed to be positive definite, we have v,Q5y, = v, D) uney > 0, where QF = n, D
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is the elastic acoustic tensor and v, is an arbitrary vector, i.e. QF is also positive definite.
For associated plasticity, we will show that the eigenvalues are positive as long as the static
bifurcation condition has not been achieved, whereas one eigenvalue becomes negative after
static bifurcation huas become possible. In this latter case we have ““divergence™ instability.

For nonassociated plasticity. the acoustic tensor Q, is nonsymmetric. i.e. in principle
it is possible to have complex values of pU'", i.e. U possess both a real and an imaginary
part. Borrowing again the terminology from aerodynamics, we shall refer to this possibility
as “"flutter” instability, cf. Rice (1976) and Leipholz (1972). since the corresponding u,-
solution for a fixed x,-vector can be shown to consist of oscillations with increusing ampli-
tude. However, we shall see that for a very broad class of nonassociated plasticity models.
“flutter™ instability cannot occur. Before this result can be established. we shall derive
analytical expressions for the eigenvalues and eigenvectors of eqn (25) that are applicable
to general nonassociated plasticity.

EIGENVALUES OF THE ACOUSTIC TENSOR

We shall now determine the eigenvalues g of the eigenvalue problem (25)
Quor=peis p= PU2 (33)

for the case of elastic isotropy and general nonassociated plasticity. In this case the elastic
stiffness tensor is given by

E
v

-
ikl ™

| N Voo
[_,((),‘ ‘)11+‘)41‘>1‘&)+ l—-"l’ J, ()Hj] (34)

where £ = Young's modulus and v = Poisson’s ratio (£ >0, —1 < v < }). The elastic
acoustic tensor Q4 becomes

1
Qi =nDn = G(l“:’j“‘_ ".'ll+‘5./) (33)

where G is the shear modulus. Since QF is positive definite, its inverse P5, exists and is given
by

o ! N
P:}- = G["* 2(‘3:;; ﬂ,if:"!‘(),jj]: P,}Q‘/ = ()If' (36)

[tappears that both P}, and Q7 are symmetric. From egns (26). (2) and (35) we obtain

|
Qlf = Q‘;lm A b:“l (37)

where

a; = ,/::mD:mklnk 5 bi = n; ngﬂgxl' {38)
With D5, being isotropic, we obtain

a =2Gp,; b, =20y, (39)

where
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v

po=Junt Tosomfes L= L (40)
v
q. =g1/\‘nk+ r:—;; ng.. 4. =¢g,,. (41)
Combining eqns (37) and (39) gives

. 4G
Qrf = Q:/” T

FRRLAE (42)

Using eqn (35) we may now reformulate the eigenvalue problem (33) as

AW ! 4G
- G )0t o5 i A o= 0. (43)

In order to facilitate the eigenvalue analysis, we shall first obtain some useful pre-
liminary results. Consider the eigenvalue problem

W o . W
Pz = 2%,

which due to egn (36) can be written as

| .
~A*)o, - 2 =0
[(l A*()a,, 2 —v) n,n,J , =0 (44)

Assuming A* = 1/G, then eqn (44) reduces to a2, = 0. In the coetlicient matrix a2, all
rows are proportional, which proves that A* = 1,( is an cigenvalue with a multiplicity of
two. We therefore obtain

_l. - -2 _ !, 45
6 M T - M )

e

where the last cigenvalue 2%is obtained from the invariant condition P, = A3+ 4%+ 4% It
appears that the parameter M is the elustic “constrained modulus™ pertinent to the case of
uniaxial strain.

Next, consider the eigenvalue problem

By, = 4y (46)

. N -
Bil = p:iQ,tl = ():I'— ‘! [,:;h;ul (47)

and where use has been made of eqns (36) and (37). It was shown by Ottosen and Runesson
(1991) that the eigenvalues are given as

. . . 1
Ay =AY = LR Ay = I — ;ib,[’::/{l]‘

P

In the present case where elastic isotropy is assumed., we find with eqns (36) and (39) that
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; . . 2G( 1 ,
Ay=ra=11 A3 =1+ i 1=, manp =34, ). 43

With these preliminary results we are now in the position to determine the eigenvalues u
of eqn (43). It appears that onc eigenvalue is g, = G. This is shown by introducing u, = G
into eqn (43) while observing that one of the rows in the coefficient matrix to ¢, can be
expressed as a linear combination of the remaining two rows. Hence, it follows that the
coefficient matrix is singular.

To determine the remaining eigenvalues g and g, we first use the invariant property

4G*
oty =0, —u, =G+ M- - 9

Moreover. from eqn (47) we obtain

det B“l = det P:‘, del Q,[

which gives

Hakalts = o, (50)

where 2* and £, were given by egns (45) and (48), respectively. With gy = G we may thus
solve for g, and gy from egns (49) and (50) to obtain

=G (51)

T i T T e
B arm="" q,p,i\/((;ww— q,p,) —~45,GM |. (52)
I 2 A A

Expressions (51) and {52) provide closed-form solutions of the eigenvalue problem (33).
Except for the assumption of isotropic clasticity, these eigenvalues apply to general non-
associated plasticity, Let us now evaluate these vilues in more detail.

For lincar clasticity we have A4 — a¢ according to eqn (4), and we obtain from cgns
(31y and (32) the familiar expressions

M= =G pa=M (53)

which are independent of the direction #,.

[n general, we have g, > py and the usual static bifurcation condition (U = 0) emerges
when g, = 0, which according to eqn (52) requires 4, = 0 in accordance with Ottosen and
Runesson (1991). This corresponds to the critical hardening modulus # = H,. It is of
interest that g, = G is constant always, whereus p, and gy chunge with the loading as well
as with the direction n,. When H < #,, which implics that 4; < 0, it appears from egn (52)
that

2>0: uy <0 (54)

i.c. there is no acceleration wave speed for the solution corresponding to uy. According to the
previous discussion, this situation is referred to as “divergence™ instability. For associated
plasticity the acoustic tensor is symmetric, i.e. its eigenvalues arc always real, but we shall
later prove that the same applies to a very general class of nonassociated plasticity. Before
this topic is investigated, it is of interest to determine the eigenvectors ¢; of the eigenvalue
problem (33).
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EIGENVECTORS OF THE ACOUSTIC TENSOR

Let us now determine the eigenvectors of the acoustic problem (33). When u = u = G,
eqn {43} reduces to

I G <
( ST A )n',‘ "=, {55)
I~ A ‘

.. the eigenvector c}"' corresponding to y = yu, is orthogonal to #, as well as to p,. i.e

" orthogonal to n, and p.. {56)

It is of interest to investigate the loading criterion (5) for the strain rate tensor
6,1 = (e, +c,n);2 in the case where ¢, is the eigenvector ¢!V, We obtain

Lo Diléal = £, Digmeet’ = 2Gp,i = 0.
This result follows from eqns (38) and (39) as well as the orthogonality of p, and ¢!
apparent from egn (56). Thus, the strain rate tensor resulting from the eigenvector ¢
corresponds in fact to neutral loading and this result also substantiates the finding that
=G,
When o= g, or uo= o (L. g # G). we obtain from egn (43) that the corresponding
cigenvectors, denoted by ¢ and ¢, must be given by

M=ty k=203 (57)

where 2™ are parameters to be determined. Inserting equ (57) into (43) yiclds the conditions

1 i .
thy . - L IV | 38
* ‘/l"/[(G l>(] ¥ ] )

3G
1 "r’/’f
Id -
2 = . (39)
i [T ¢
i iy
G A 1
for & = 2 and 3. The equivalence of these two conditions results in an expression, which,

after some algebra, is casily shown to be identical with egn (32).

Hilt (1962) investigated the case of large strains in conjunction with associated plusticity
and gave expressions from which the eigenvalues and cigenvectors can be determined. To
compare the present results with Hill's expressions in the case of small strains, we can insert
i as given by eqn (52) into the expression for 2% as given by ¢gn {38). In the case of
associated plasticity we obtain, after some algebraic manipulations, the same expressions
for the cigenvectors as provided by Hill, ¢f. egns (43)-(45) in Hill (1962). Also the
expressions for the eigenvalues provided by eqns (31) and {32) reduce for associated
plasticity to those given by Hill. cf. eqns (43) and (43a) in Hill (1962). in fact, egn (45a) in
Hill {(1962) emerges from our eqn {58).

Clearly, for ¢!* and ¢! to be orthogonal to ¢!, they have to lic in the plane spanned
by n, and p,, since ¢!" is orthogonal to this plane, cf. eqn (36). However, in the case of
general nonassociated plasticity ¢, # p, and. furthcrmore, ¢, is not spanned by », and p,.
This implies that ¢¢*'c!" # 0 and ¢! V¢!" # 0. It then follows that ¢! and ¢! are orthogonal
to ¢! only in the case of associated pldhthlty where g, = p,.

It is also concluded that ™ and ¢! are mutually nonorthogonal in the gencral case,
which can be shown by considering the scalar product ¢f”'¢}". From eqn (57) we obtain
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(_}:)(.}h - l+(1‘:‘+z"")n,q,+1‘:’1”’q,q;. (60)

Using eqn (39) for example. we obtain, after some algebraic manipulation.

2P = (1 —2\')iq il
A ng,
. 1 4G
4P = - — [l +(1=2%) ——q‘pk:l
ng, A
which inserted into egn (60) gives
s 4G (n
AN = (1=2v) i ("'% Gt —-q//n) (61)

It follows that '@ and '™ are orthogonal only when p, = ¢, i.e. in the case of associated
plasticity. Consequently, only associated plasticity implics that all the eigenvectors are
orthogonal, whereas all eigenvectors become nonorthogonal whenever nonassociated
plasticity is employed. That associated plasticity implies orthogonal cigenvector follows, of
course, trivially from the symmetry of the acoustic tensor.

Finally, let us consider the limiting case of lincar clasticity defined by A — x| where
the cigenvalues are given by eqn (53). For i =y, = G, eyn (53) with 4 — « holds for
both ¢ and ¢V, i.c. both " and ¢V are orthogonal to #, and they can be taken as
mutually orthogonal. For jt, = M both cqn (58) and (59) imply that 2% = 0,7i.c. eqn (57)
gives that ¢ = n,. We have thus rediscovered that the longitudinal (dilatational) waves
corresponding 1o g, = M travel in the direction of n,, whercas the transverse (shear)
waves corresponding to g, = u, = G travel transverse to the a-dircetion (as the notation
indicutes).

We may summuarize by stating that for lincar ctusticity the two transverse waves are
orthogonal to the longitudinul wave and the transverse waves can be chosen as mutually
orthogonal. For associated plasticity, all the eigenvectors are always orthogonal, whereas
nonassociated plasticity implics that all eigenvectors become nonorthogonal.

WHEN ARE THE EIGENVALUES REAL?

We shall now prove that for a very broad class of nonassociated plasticity, the eigen-
values are always real, implying that “divergence™ instability can occur, while the phenom-
enon of “flutter” instability cannot. Divergence instability occurs if the discriminant D in
eyn (52)

4 2 2
D= (G-}—M—- —Gr q,p,.> —4i,GM (62)
#

is non-negative always. We observe that when 4, <0 then D = 0 holds always, i.e. the
possibility for complex eigenvalues expressed through D < 0 exists only when 4, > 0, which
corresponds to the regime before static bifurcation becomes possible. On introducing the
notation
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2G
N, = Rz (63)
2G
Ne=panpn (64)
we can rewrite 4, given by eqn (48) as
. N :
Ay o= 1 + I_'Y —2\ - (65,’

With egns (63) and (635). egn (62) takes the form

- M-GY 2
D = JG- AVI“"' "G - ]’_'ﬂ““(lwz—[\|) . ((’6)

Let us also introduce the definitions
q.pr = lglipleos0; qn, =lglcost, . pn =|pjcosd, (67)

Then we can write
7 " 2(" - ~ - 2y .
N, N = p [pllgl(cos 0, cos B, —cos 0), (6%)

For assoctated plasticity we have p, = ¢, implying that 8 =0 and 8, = 0,, i.c. eqn (68)
becomes

) 0,
Ni=N, = P pl-(cos 0,-1) €0

where the inequality is valid since cos® ,— 1 < 0. In this case it appears from eqn (66) that
D = 0, which proves the already known fact that for associated plasticity the eigenvalues
are always real.

With this obscrvation, it becomes natural to investigate the sign of N.— N, for non-
associated plasticity as well, and we conclude that the eigenvalues are always real whenever

o =qgunmp,—qp <0 {69}
holds, which implies that

2G

Ny,—=N, = <0 (70)

To prove this inequality for nonassociated plasticity. we shall make two minor assumptions,
which are valid for all practical purposcs.

The first assumption is that f, = ¢ f/Ca, and g, = d¢/ls,, possess the sume principal
directions. This assumption is valid for general mixed isotropic - kinematic hardening, where
S =fo,—2,.k)andg = g{o,—2,.x,) and fand g are isotropic Functions of the argument
o, —%,;. In these expressions, %, denotes a tensorial hardening parameter (“backstress™)
and x, (2 = 1,2,...) are scalar hardening parameters. The principal directions of f,, and g,
then coincide with those of the tensor g, ~2,. We may now conveniently choose the
coordinate system colincar with the principal directions of £, and g,; to obtain
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fi 00 g, 0 0O
fo=10 £ 0} 9,={0 g, O (7
0 0 f; 0 0 g,

where f\. f+. frand g,. ¢.. g+ denote the principal values of £, and g,,. respectively. Without
loss of generality we can take

hH=zfz2 /. )
The second assumption is that eqn (72) implics
g1 29:29s (73

Even though we have not been able to prove that eqns (71) and (72) imply (73).
assumption {73} still comprises a very general class of nonassociated plasticity behaviour.
In tact. we have not been able to identify any existing constitutive model, which satisfies
eqn (71). but for which eqn (72} does notinfer (73). A trivial example, which satisfies eqns
(71) -(73). is associated deviatoric behaviour and nonassociated volumetric behaviour ; this
case includes the classic nonassociated Drucker - Prager model

From egns (40) and (41) we now obtain

(IR SIALE (g+39.)n, v
Ol RV S 7SS D Al RS b URY B el e W 4
(fi+3/om (g +79.)m
This yields
R=pn = [ini+ funi+ fini+pf, 7%
S=qn =gni+gmi+gni+v), (76)
pg, = Koni 4+ Kas + Kand (77
where

Ki=(/i+2/ Mg +79). Ke={fi+7/0g:+79.) Ky =i+ )09 +79.).
{(78)

Inserting eqns (75)-(77) in eqn {69) results in
¢ = RS—Knj~Kwni—Kni. (79

As we want Lo prove incquality (69). it is natural to determine the extrema of ¢ with respect
to variations of the n-vector. Details of this analysis are given in the Appendix, where it is
proven that ¢ €0 always holds. Thercfore, according to eqn (70) it follows that
N,— N, <0, and from egn (66) it follows that the discriminant D appearing in eqn (54) is
always non-negative, i.e. the cigenvalues of the acoustic tensor @, are always rcal. Conse-
quently, the so-called ""flutter™ instability discussed in the literature, e.g. Rice (1976), cannot
occur.
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DIFFUSE WAVE MODES

We shall now prove that some rather dramatic wave motions can occur. which we
shall term diffuse wave motions. This phenomenon is related to the situations when ¢ = 0.
From the Appendix. the pertinent situations can be summarized as shown in Table 1. It
appears that for general stress states, where f, > f. > fiand g, 2 ¢. > ¢.. we have three
different choices of n, for which ¢ = 0. For special stress states. other #-vectors also imply
¢ =0,

According to eqn (70). the situation ¢ = 0 implies that V.-V, = 0 and from egn (66)
it then follows that the discriminant D is given by

G (.. M-GY
D= (M_:g--). (80)

A very interesting situation can now arisc. Suppose that D = 0. i.c.

A{—G 1

N, = = )
: 2G 21 —2v)

(81)

With D = 0. it follows from eqns (52), (62) and (63) that
o= = G+ M -GN ) =G

where egn (81 has been used. Therefore, when egn (81) is fullilled and the n-vector is
chosen appropriately, we obtain the interesting situation that all cigenvalues are cqual and
are given by

==, =G, (82)

i.c. all waves travel with the sume wave speed. In accordance with the definition of N, given
by eqn (63). the fulfilment of eqn (81) requires a specific value of A, whereby it will be
recalled that ¢, and p, are fixed for the chosen value of the #-vector. This value of A, in
turn, implies a specific value of the hardening modulus #. To evaluate whether this value
is physically acceptable, we evaluate 4y as given by eqn (65), which can be rewritten as

Ny=N, =2

o= 4 —>-
& + [ —v -1

In the situation under consideration, ¢ = 0 holds and since this implics N, = N,, where N,
is given by eqn (81), we obtain

Table 1. Situations where @ = 05/, 2 .2 fiand g, 2 9. > 4,

Stress stale n,-vegtar

ai=l m,=n.=0
Hztl.2/1n y‘B_fI:?y‘ n, =0, ’ff‘-_-L 1y =0

ny =y =0, ni=l

fi=/f:>f andlor g, =g¢g,>g, ni+ni=1 ai=0

fi>fi=/1 andjor g, >g, =g, ni=0, nidni=|

fi=f=/f andor g,=g¢g.=g. nienidnl =t
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1=2v [
_____s_‘
2(1—=v) "2

(83)

0<;.3=

Recalling that 4; =1 for purely elastic behaviour and 4, = 0 when static bifurcation
becomes possible. we conclude that the positive 4;-value given above is fully acceptable
since it corresponds to the regime before static bifurcation becomes possible in the pertinent
n-direction.

The situation for which eqn (81) is fulfilled has some further dramatic consequences
for the eigenvectors. To show this. we have to determine the values of cos 8, and cos 6,. As
N, = N.. we obtain from egn (68)

cos 8§ = cos 8,cos 0, (84)
and from eqns (63). (67) and (81) we conclude that
cos > 0. (85)
First consider associated behaviour, i.e. cos ¢ = 1. for which eqns (84) and (85) yield
cosfl, =cosl, =1 or cosf,=cosll, = —1. (86)

We shall now prove that rclations (86) also hold for nonassociated behaviour. Equation
(74) results in

R

P12 = (i 7L m+ (a7 i+ (L +374)°m (87)
lgl* = (g1 +79.) m + (g2 +79.)°mi+ (g1 +79.) mi (88)

whereas expressions for pa, = [p| cos 0, and ¢g.n, = |p| cos 0, arc given by eqns (75) and
(76). Referring to Table 1 and considering the situation where £, 2 /22 fii9,. 2 9.2 ¢,
and ni = 1, n, = n, = 0 we obtain

PP = (fi+30)% plcost, = fi+3/,
and

gl = (g1 +79.)° 0 lqlcos O, = g1 +39,
which imply eqn (86). The same result applics to all the cases shown in Table | provided
that the “and/or™ condition is replaced by an “and™ condition.

From eqn (86) and the definitions p,n, = |p} cos 0, and ¢,n, = |¢| cos 0, it follows that
cither

po=lpln g =lgln, (&9

or
po=—lpln;: g, = —lqin,. (90)

For the case constdcred, we recall from eqn (82) that u, = y, = 3 = G. However, when
1t = G holds, cqn (55) defines the eigenvector ¢, i.¢. we have

1 4G
[, q q.p Jer=0

which due to eqns (89) and (90) takes the form
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1 4G
[ T3, g Pl jane, =0, O

Due to eqns (84) and (86) the relation cos ) = | holds. Therefore. using eqns (63). (67) and
(81) we obtain

5

2G ]
i [ = — = e 2
Vi= = laliel = 5255 92)

When this relation is inserted into eqn (91) it implies that the coetficient matnix to ¢, vanishes,
i.e. eqn (91) is satisfied for arbitrary ¢-vectors.

For associated and nonassociated plasticity, we thus reach the interesting conclusion
that a certain vilue of the hardening modulus exists for which specific choices of the n,-
vector will always imply that all wave speeds are identical and equal to the elastic shear
(distortion) wave speed. ie. pU{, = pUl, = pU7, = G. and the corresponding cigen-
vectors are arbitrary. This value of the hardening modulus corresponds to the regime before
static bifurcation becomes possible in the pertinent #-direction. In this situation the acoustic
(or polarization) tensor therefore loses its ability to provide distinct —polarized —eigen-
vectors and the wave modes might be termed dittuse. This situation is most remarkable
and may have significant ramifications tor the interpretation of seismic waves and —in
particular-—waves from underground explosions, where the matertad is highly stressed.
Morcover, the existence ol diffuse wave modes also calls for special precautions in numerical
modelling.

EXAMPLES OF MATERIAL BEHAVIOUR

Let us now illustrate some of the findings by considering the two simple plasticity
formulations of von Mises and Rankine.

ron Mises criterion
An isotropic hardening von Mises model is detined by
/ =g = \/"3./3—'\' = () (93)
where the invariant J, is given by J, = 5,,5,/2 with s, being the deviatoric stress tensor; «
denotes a hardening parameter. Since we assume assoctated plasticity p, = ¢, holds, and
choosing the coordinate sytsem colincar with the principal directions of the stress tensor
we obtain from eqn (40) that

M 3 b 3 h M 3 Al Al bl
np, = (nisy+nss,+uisy) . py, = 4/ (nis7 0383 +n3s3). (94)

2./34,
For simplicity, we shall in the following assume a uniaxial stress state given by the tensile
stress a,. It follows that \/313 = a,, and climinating n3 through the constraint relation
ni = 1 —nj —ni. we obtain from cqn (94)

mp, = 3ni=1): pg =L3ni+1). (95)

Moreover, from eqns (4) and (48) it is simple to demonstrate that

Q

. 1 R . ,
A=H+3G: i, =1+ ,»':lw-_»(3/1.‘—1)'—2(3/1;+I):I. (96)

24 1=

From eqn (45) it follows that
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Fig. . Unit sphere for the n,-vector.

2G(1 —v I—dv
[ Ukt VR S PN S it 7)

1 -2¢ 1 =2¢’ 1 -2v

Use of eqns (95)-(97) in eqns (51) and (52) then provides the following expressions for the
eigenvalues:

Lo (98)

M e . S - : :
Gl 13-4 i+l +/ L, miel 403 =1)° }
wo [ 20=2 3+nGY TN LE=20 T 3G ] GHHIGN( =20
G
(99)

[t appears that the normalized eigenvalues p,/G and /G depend only on Poisson’s ratio
v. the value of i and on the ratio #/G. For given values of v and #/G, it may therefore be
of interest to evaluate how p,/G and p,/G vary with the value of nj. Since only nj enters
the expression the eigenvalues are independent of the specific values of n, and n; except
that the constraint relation a3 +n3 = | —nj always holds. According to Fig. [, showing the
unit sphere at which the n,-vector is located, this implies that along the two circles C, and
C, given by #i = constant, we have the same eigenvalues g, and g, We therefore choose
to illustrate the variation of g, and g, with the direction of the n,-vector by considering
only the n n;-plane shown in Fig. 2. Alternatively, the ny-value in Fig. 2 can be interpreted
as the value +./n}+n3. It follows that cos ¢ = n, and 0 = (n/2) —, where the angle 0
shown in Fig. | corresponds to the angle defined in Ottosen and Runesson (1991).

ny

Ry

Fig. 2. Plane illustration of variation of n,.

SAS 28:2-8
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With these preliminary remarks and recalling that u4,/G = 1 always holds. we may
visualize the magnitude of the normalized eigenvalues u./G and u,,/G given by eqn (99) in
the form of polar diagrams. where the polar angle ¥ shown in Fig. 2 is determined by
cos ¥ = n,. The results for v = 0.3 are shown in Fig. 3 for different values of H/G.

Figure 3(a) shows the linear elastic behaviour, where g, and i, do not depend on
the direction of the n,-vector. Figure 3(b) shows that plasticity introduces a directional
dependence. and in accordance with eqn (99) we observe the symmetry about both axes.
Figure 3(c) finally iltustrates the situation where the eigenvalue g, becomes zero for one
direction, i.e. the situation has just been reached where stitic bifurcation becomes possible.
This is equivalent to the condition that 2; = 0 and from eqn (96) we obtain the bifurcation
direction

(g)Elastic (b)H/G=0

(cinsG:-1r:-065 (d)H/G=-1

P— o ——

(e)H/G=1-Bv:-14 (f )H/G=-2(1+v)z-26
92:72.4‘

Fig. 3. von Mises plasticity ; uniaxial tensile stress: v = 0.3, Variation of normalized eigenvalues
$1/G (———=)and 1,/G ( ) with the n,-value.
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The first moment, when this relation becomes possible, occurs when the discriminant is
zero which provides

n

—_—ra

l+\" , 2—v

= - M n?:v—"‘ (lOl)

H
G

Choosing n, = 0 we have n; = | —nj = (1 +v)/3. i.e. the angle 0 shown in Figs 1 and 2 is
determined from tan® ¢ = nj/ni = (2—v)/(1+v) in accordance with the result given by
Ottosen and Runesson (1991). For v = 0.3. the value 6 ~ 48.8 is obtained. cf. Fig. 3(c).
Moreover. from eqn (101) we obtain that the critical hardening modulus. for which static
bifurcation becomes possible, is given by H = — E/4. In Ottosen and Runesson (1991) the
critical hardening modulus was found to be H = — E/12; however. since the yield criterion
in Ottosen and Runesson (1991) was stated as f = \/J,—« = 0. which differs from eqn
(93), the value of H in Ottosen and Runesson (1991) is one third of the value of H considered
here, i.e. the two expressions for the critical hardening modulus coincide.

In Fig. 3(d) the ratio H/G ischosenas H;G = — 1, i.e. the softening is more pronounced
than that for which static bifurcation first becomes possible. Static bifurcation is still
possible since it can occur when 4, = 0, which implies eqn (100). Thercfore, for the given
ratio, H/G. eqn (100) and the relation sin 6§ = n, determine two € angles for which static
bifurcation is possible. In the present case we obtain 0, = 35.3 and 0, = 63.4 " as shown
in Fig. 3(d). Between these angles we have 4, < 0 implying g, < 0, which. in turn, implics
a state of divergence instability. These ncgative values of g, are not shown in Fig. 3(d).

In Fig. 3(¢) static bifurcation is possible for 0, = 28.3 and 0, = 72.4 and a state of
divergence instability exists between these angles ; again the negative values of gy in this
region are not plotted. Another interesting phenomenon appears trom Fig. 3(c), namely
that of diffuse wave motions. It appears that at point P we have 4,/G = 3G = | (and of
course p,/G = 1). The point P corresponds to ni = 1. According to egns (83) and (96) we
obtain for diffuse wave modes

l l b bl -
iy= o= v*-[I-:‘;On;—l)'—2(3/1;+l)] (102)

which, as expected, is fulfilled for n{ = | and the value //G = 1 —8v that was adopted in
Fig. 3(¢).

In accordance with Table | and since f, > f, = f for uniaxial teasion, a ditfuse wave
motion should exist also for ni = 0. This situation is shown in Fig. 3(f) at the point Q
where ni = 0 holds. As expected, the value H/G = —2(1+v) adopted in Fig. 3(f) and
ni = 0 satisfy eqn (102). In Fig. 3(f) it is also of importance to note that the characteristic
four-leaf clover-shaped graphs of the variation of u,/G have given way to slender two-leaf
shape. This is a result of the angle €, being extended to 90 ', and in this case only the minus
sign in front of the square root in eqn (100) provides a value of a7 in the range
0 < ni < |. In the present situation we obtain 0, = 7.3". It is of interest that the value of
the hardening modulus used in Fig. 3(f) can be written as #/ = — E and this corresponds
to a softening branch having a vertical slope, i.c. a completely brittle behaviour. However,
even in this extreme case the condition 4 = H+3G = G(1 —=2v) > 0 is fulfilled.

We finally obscrve from Figs 3(a)-3(e) that u,/G = 1 holds for nj =0 orni = 1. Itis
casily shown from eqn (99) that this is a general result, which holds as long as H/G > | —8v.
From eqn (99) it also follows for —2(1+v) < H/G < | —8v that nj =0 still implies
13/G = 1. whereas ni = | now implies i-/G = 1, cf. Fig. 3(f). This change of behaviour
explains the change of the four-leaf clover shape of Fig. 3(e) to the two-lcaf shape of Fig.
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3(f). For the remaining range defined by —3 < #;G < —2(1+v) it is easily shown from
eqn (99) that n{ = 0, or nj = |, always implies ,/G = 1.

Rankine criterion
As a material model representative for the modelling of cracks in cementitious material
we now consider the associated maximum tension cut-off criterion. i.e.

S=g=0,~0,=0 (103)

where 6, 2 0. 2 o, are the principal stresses (tension positive) and 6, > 0 is the uniaxial
tensile yield stress. From eqn (40) we obtain

ni v

hl V !
np, =ni+ *l—:‘z‘; Py = 1‘:'7{; + (T—:—:’T): (104)
From egns (4) and (48) it follows that
2G6(1 —v) 2G P vl
A=H+ 7}-._7;_?\: VA= I+ A(‘l ;_"“} (d’l‘ — ol — 1 ..EZV . (IOS)

Conscquently. use of eqns (51). (52), (97, (104} and (105) results in

FL
Q= | (106)
.
;‘3 4(,";_}. IV )
< 1| 3—4v P2y
T2y =2e . H
Ha ! 2(E=v)+ (1 =2v) |
G G
2 v? : 2 Ry
. | 4(”, + I*:“z'v) '6(". + l":i*;)
!__7’+ - "Il (107)

2(l—v)+(l—~2x')g 2(1——&*)+(i-—-2v}5

These relations refer to a general stress state satisfying the yield criterion. However, the
values of 4:/G and /G depend only on v, nj and H/G. Similar to the previous case, eqn
(107) is illustrated in the polar diagram shown in Fig. 4, where the value v = 0.3 is adopted.

Figure 4(a) shows the clastic behaviour and Fig. 4(b) the hardening response. Accord-
ing to eyns (83) and (105) diffuse wave motion requires that

(108)

; - = m i - i e i s § 1Y e BT e e
Ay =1 ny =2 3

1 —2v 2(1—2v) v? )
(= (I-»-v)[?.(l—v)-{—(l—?.v)g]

This relation is fulfilled for ni = 1 and H/G = 2(1 —v), i.e. point P in Fig. 4(c) shows, as
expected. a state of diffuse wave motion. It is of considerable interest to note that, in
contrast to a von Mises criterion, we now have diffuse wave motion in the hardening regime.

Static bifurcation becomes possible when 4, = 0, which due to eqn (105) yields the
relation
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Fig. 4. Runkine plasticity; general stress states; v = 0.3, Variation of normalized cigenvalues
16—~ — —)and p,/G ( ) with the value of n,.

nj=1l+ [-—»(l—v),-)%r. (109)

The smallest stress level for which this relation becomes possible is when the discriminant
is zero, providing the conditions

H=0. ni=1 (110)

ie. 0 =90 assin@ = n,. These expressions are in accordance with the findings by Ottosen
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and Runesson (1991). It appears that Fig. 4(d) illustrates the situation where static bifur-
cation first becomes possible.

In the softening region, where ;G = — 1, the response is shown in Fig. 4(e). Static
bifurcation is still possible and it may occur for the value of n{ provided by eqn (109).
where it is obvious that only the minus sign in front of the square root can be applied. With
sin 8 = n,, we obtain # = 39.7 and in the region defined by ¥ = +(90—0) = +£50.3 . we
have 23 < 0 implying divergence instability as well as negative values of u, not shown in
the figure.

Finally, in Fig. 4(f) we obtain a state of diffuse wave motion at point Q. This is in
agreement with the fact that, according to Table 1. n; = 0 is a possibility since f, > f» = f;.
As expected. the conditions n7 = 0 and H;G = —2(1 +v) fulfil eqn (108). Like in Fig. 3(f).
we observe that the value of the hardening modulus used in Fig. 4(f) can be written as
H = —E. and this corresponds to a softening branch having a vertical slope: even so.
the condition 4 = H+2G(1 —v)/(1 —=2v) = 4Gv*/(1 —2v) > O is fullilled. The direction for
which static bifurcation is possible is determined by 6 = 12.4 .

We finally observe from Figs 4(a)-4(c) that u,/G = | holds for ni =0 or nj = 1. It
appears readily from egn (107) that this is a general result which holds as long as
H/G = 2(1 —v). From eqn (107) follows also that for —2(1 +v) < H/G < 2(1 —v) then
ni =0 still implies 1,/G = 1, whereas n{ = | now implies 1,/G = 1. ¢f. Fig. d(d)-4(f).
This change in behaviour explains the change in the variation of u./G when compar-
ing Figs 4(a)-4(c) with Figs 4(d)-4(f). For the remaining range where —2(1 ~v)/(1 —2v) <
H/G < =2(1+v) it is casily shown from cqn (107) that #7 = 0 or n{ = 1 always implics
wa/G =1

CONCLUSIONS

Explicit analytical expressions were derived for the cigenvalues and cigenvectors of the
aceeleration wave problem pertinent to general nonassociated plasticity theory. For associ-
ated plasticity, these expressions reduce to those obtained by Hill (1962). The cigenvectors
are orthogonal for associated plasticity, whereas nonassociated plasticity implics that all
cigenvectors are nonorthogonal. [tis of interest that one cigenvalue is always equal to the
shear modulus. [t was shown for a very general class of nonassociated plasticity behaviour
that the eigenvalues are always real, implying that so-called “divergence™ instability can
occur whereias “flutter™ instability cannot. In addition, we discovered the interesting
phenomenon of diffuse wave motion, which can occur in any elasto-plastic material. In this
stituation all wave speeds become identical and equal to the elustic distortion wave speed,
and the corresponding eigenvectors are arbitrary. Finally, for the models of von Mises and
Rankine some of the different phenomena were iHlustrated graphically, and it was observed
that diffuse wave modes might occur both in the hardening and softening regimes.
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APPENDIX

According to egn (79). we shall determine extrema for the function ¢ given by
@ = RS—K\ni—K.ni—Kn; (AD)
subjected to the constraint
ni+ni4ni—1 =0 (AD)
In eyn (AD). we huve adopted the notation
R=fini+fini+ fini+yfin S=gini+gni+gini+iy, (A3)
K. =(f+7/)Mg,+79,) (nosummation). (Ad)

Using the Lagrange multiplicr technique. we define

L=p—ini+ni+ni-1) (AS)
for which the necessary conditions of extremum points are
L . ‘L s s
o = 240, = 0(no sumnuition) ; = ~(nj+ni4+ni=1) =0 (A6)
where
A= S+ R=-K -4 (i=1,23). (AN

o the following we shall assume that £ > £, fiand g, 2 ¢, 2 g1 We may now identify three cases for which
cqn (A6) s fullilled : (1) none ol ny, ny nis zero, (i) one of g, ny, nyis zero and (i) two of wy, ny, 1y are zero.

() None of 0y, 0, ny iy zero
From egn (A6), we conclude that A4, = A4, = 4, = 0. From ¢yn (A7), we determine 4 from A, = 0 and use

this expression tn conjunction with 4, = 0 and A, = 0 to obtiin

SN =+ Ry —g))+K,—-K, =0
S‘”l_ll\)+R(.‘/I‘,‘I|)+KJ"KI=0- (A8)

Using the constraint condition #] = | —a3 —nj in the expressions for R and S given by egn (A3), we obtiin from
(AX)

[ AL =Ny —g) (_/'.—_/\)(y.—y;)+(f.—_l';)(y‘—y|)] "} - (Si=/ Mg~y
(Li—=T Ny =g+ =09 —¢g0) Sfi=S Mg =9 " (Si—f)g =90 ]
(A9)

Let us now evaluate solutions of egn (AY) recalling that #3 > 0. #3 > 0 and n3 > 0 hold.

(1) Assume £, > £, 2 [ gy > g 2 g, By a row operation uand some algebra, cgn (A9) can be transformed
to the following form

[2(/] ~I Mg =9 (=S Mg =g+ )= [: Mg, —!l\:l I:”EE] - [(f: -y, —!I.')] (A1D)

0 P n; Q
where
P=—[tfi=f Mg =90 =fi =g, —g)] €0 (ALD
Q= (/1= =g =fNag =g+ (i = i) g2 =g )]} 2 0. (A12)

Clearly, in order that Pr; = Q admits a solution 13 > 0, we must requirc that P = @ = 0. As f, > frand g, > g,
the requirement @ = 0 implies that the contribution from the bracket present in the expression for ¢ must be
zero. However, as both terms in this bracket are non-negative, we must require f, = f, and g, = ¢,. This
requirement also implies that P = 0. Therefore we need only consider the case:
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(lay i>h=f.g >g =g
From the first row in egqn (A10) we obtain

ni+ni =4 ni=}

and from eqn (A1), the corresponding extremum value of » becomes

©=—ifi—FMg, ~—g:)<0.

(2) Assume by = [, 2 fi. g, > g. > g,. The equation system (A9) reduces to

0 (fy =1 —a) [n? ~
(f,“/‘:”,(l\"y:) 2(,/]—/})(5/.—.(/‘) ”i - (f|“,f‘:)(_l/|“,¢]|)

In order that n3 > 0 we must require f, = . = f; and, therefore, we only consider the case:

Ray fi=H=0,g>g. 28
The equations above are fulfilled identically and we have the solution

ni4ni+ni =1
In this casc, it 1s castly shown that eqn (A1) yiclds
p =0

(i) £, >t 2. g = g > g Equation {AY) reduces to

0 o= flgy =g [ ei]
h=Ia =g AN =THe =g jini ] LA =1ota =g

Clearly, in order that 27 > 0 we must require ¢, = ¢, = ¢, 1.¢. we are left with the case:

W > 26, g =g =g
Equation (A18) is always fulfilled and we have

nienidny =1
as well as
¢ =0

a4 =1, =26, g =g 2 g, Equation (A9) beeomes

2N =Ny, ‘.‘/-)"': =(/i=S Mg —4:).

() =6 >t g, =g, >
Equation (A21) provides

Evaluation of egn (A1) gives
o= =Ufi=f)gi—g:) <V.

(i4b) I =N =1f, g =g 2g
Equation (A21) is fultilled idenucally and we just have

ny+nitn; =1
as well as

¢ =0.

ey =0 >l g =8 =g
The solutions given by egns (A24) and (A25) are valid.

(i) One of a,. 0y, is zero

(iilyn, =0 (n, # 0.n, # 0). From cqn (A6). we obtain 4, = A, = 0, which due to egn (A7) results in

(i S+gR=Ky—i=0
[ S+yg.R—K,—4=0.

Eliminating 4 and using the constraint condition n; = | —#3, we obtain the relation

(AlY)

(Al4)

(AlH

(Al6)

(A7)

(A1)

(AlY)

(A20)

(A2l)

(A22)

(A2})

(A24)

(A25)
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S S NG =g = (fr= ilg:—g,). (A26)

tiita) Assume f, 2. >, g 2 2: > g
The equation above vields

ai=L ni=i nAi=0 (A27)
and ¢ given by eqn (A1) becomes
@ = —fr=fMyg:~g) <0 {A28)

tith) dssume [, 2L =fiandorg, 2. =&
Equation (A26) is identically satisfied and we have simply

nitni=\ n

=

=10 (A29)
as well as
@ =0 {A30)

tii2) ny = 0(n, # 0.n, # 0). From eqn (A6), we obtain 4, = 4, = 0 which due to eqn (A7) results in

/iS+g R~-K,~i=0
S+ R-K.—i=0.

Eliminating 2 and using the constraint condition #{ =  —n3, we obtain
WSy =S Ngy =g dmi = (fi =S )a = ¢)). (A3D)

(i2a) Assume £, > 1, g, > g
The above cquation results in

mi=4 ni=0, ni=1 (A32)
and o given by eqn (A1) becomes
@ = =Hfi~fHagi~g0 <0 (A}

(112b) Assume =0, = 0, andjor g, = g, = g,
Equation (A31) is identically satistied and we are left with

ni+ni=1, #i=0, ¢=0 (A3d)
(ii3) ny = 0 (n, # 0.1, # 0) From eqn (A6) we obtain A, = A, = 0 which due to egn (A7) results in

[iS+g R-K ~i=0
LS+ R-K, -2 =0

Eliminating 4 and using the constraint condition n} = 1 ~n}, we obtain
2= ) =gl = ([ = [0 ~9)). (A35)

(i3 Assume [, >0 20 g, >0 21
The above equation results in

mi=4 ni=L ni=0 (A36)
and ¢ given by eqn (A1) becomes
o= = fi~[i g ~g2 <0 (A3

(ii3b} Assume £, = 6y 2 fandlor g, = g, 2 g,
Equation (A35) is, again, identically satistied and we are left with

meni=1, al=0, =0 {A38)

{11} Dwer of 0 na.n,y are Zero

Assume that #f = | while #} = nl = 0. It then immediately follows from eqn (A1) that ¢ = 0. Likewise,
when ni = L or n} = | we obtain that @ = 0.

In conclusion. it has been proved that ¢ € 0 for all extrema. i.c. ¢ € 0 holds always, The situations for which
@ = 0 are summarized in Table 1.

SAS 28:21-¢



